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1. Phys. A Math. Gen. 27 (1994) 3895-3913. printed in the UK 

The two-singular-manifold method: 
I. Modified Korteweg-de Vries and sinGordon equations 
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t Dienst Theoretische Natuurkunde, Vije Universiteit Bmsel, 8-1050 Bmssels, Belgium 
$ Service de physique de I'etat condense, Centre d'6tudes de Saclay, F-91190 Gif-sur-Yvette 
Cedex. France 

Received 6 Jan"- 1994 

Abstract. We address the problem of finding, by Painlev6 analysis only, the Biicklund 
transformation of panial-differential equations (PDFS) having two families of movable singuiarities 
with opposite principal parts, such as the modified Kotteweg-de Vries (~mv), sinffiordon or 
nonlinear Schr6dinger equations. This first paper gives an almost algorithmic method which 
extends the singularmanifold method of Weiss l b t  is unable to handle these equations. FusC 
with only one singular manifold at a time, we obtain the Darboux transformation. Semnd, 
we assume that the ratio of two functions defining the singular manifolds satisfies the most 
general projective Riccati system with undetermined coefficients; the Darboux transformation 
then geaenerates a very small number of determining eqnations, adniYing a unique solution, 
equivalent to the Lax pair of the Zakhamv-Shabat-Ablowia-KaupNewellSegUr scheme by 
the canonical linearization of the R i d  system. The method is here applied to the M K ~ V  and 
sineGordon equations. 

1. Introduction 

For partial-differential equations (PDES), one of the most widely accepted definitions of 
integrability is the existence of a Backlund transformation (BT) (Biicklund 1883, Rogers and 
Shadwick 1982). A BT between two given PDEs 

E 1 ( u , x , t ) = O  ~ &(U,X ,T)=O (1) 

is, by definition (Darboux 1894 vol III ch Xn,  Matveev and Salle 1991), a pair of relations 

(2) 

where Fj depends on the derivatives of u ( x ,  t )  and U(X, T )  such that the elimination of U 
(respectively U) between (4, Fz) implies E N ,  X, T )  = 0 (respectively x ,  t )  = 0). 
When the two PDES are identical, the BT is called the auto-BT. The auto-BTS for the two 
PDES mainly considered in this paper are as follows. 

(i) The sine-Gordon (SG) equation. Given two solutions U and U of the so equation 

Fj(u, x ,  f ,  U, X, T )  = 0 j = 1,2  

E1 =uXI-s inu=O 

E2 U,, - sinU = O  

(3) 

(4) 
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3896 M Museite a d  R Conte 

the aUtO-BT is defined as (Lamb 1967) 

(5) 
1 ,  u + u  U - U  

F1 = (U + U), + 4Asin - = 0 Fz = (U - U), + - sin - = 0 2 A 2 

where A is an arbitrary constant, as shown by the elimination of U (respectively U) between 
them 

U-U 
2 

-2AFzcoS- E ~ E I  1 u + U  
F1.t + F Z , ~  - - Fl COS - 2A 2 

1 u+u U - U  
F I , ~ - F ~ ~ + - F I c o s - - ~ A F ~ c o s -  2A 2 2 =2Ez. 

Lamb (1967) showed how to obtain from these relations an infinite family of particular 

(ii) The modified Korteweg-de Vries (MKdV) equation. Similarly, for the MKdV equation 
solutions, e.g. the N-soliton solution. 

the aUtO-BT is given by (Lamb 1974) 

FI = (w + W), + 2aAsinh - = 0 (10) 
w - w  
a 

w - w  w - w  FZ -(W+ W)~-8AzW,+4AW,co~h- 
(Y 

(11) 

where A is an arbitrary constant and w, W are the potential fields 

- 
(12) wf - U = w, U = W ,  E = &  E(w) E WI + w~~~ - 2- - 0. 

a2 

Indeed, the elimination of w yields 

e-(w-w)/u[(e(~-W)/uF,)~ - (e(w-w)/"F2)x] 9 2E2. (13) 

Remark. The second BT equation (11) can also be written in the symmetric form: 

' (14)' 
w - w  w:+w,z, w - w  

sinh - = 0 
a: ff 

(W + W), + 2A(W - w ) ~ ~  cosh - +D. 
a 

which is invariant under the involution (w, W, A) + (W, w, -A). 
Since the BT results from an elimination process (Wadati et al 1975) it is sufficient to 

obtain both the Lax pair (Lax 1968) and the Darboux transformation (Dn (Darboux 1882) 
in order to constructively prove integrability. 
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On the other hand, the study of the singularity structure of the ‘general solution’ of 
a PDE (Painlev6 analysis (Weiss et al 1983)) provides quite important information. If the 
PDE passes the Painlev6 test (a set of necessary conditions for the absence of movable 
critical singularities in the ‘general solution’), it may be integrable. A sufficient proof of 
integrability is then the explicit construction of a DT and a Lax pair, and Weiss (1983) has 
succeeded in doing this in an almost algorithmic way with his singular-manifold method 
for many PDEs (KdV, Boussinesq, Sawada-Kotera and others). 

However, when one carefully examines the list of PDEs thus processed by Weiss, one 
notices (Musette and Conte 1991) that this singular-manifold method is successful only 
when the DT involves one singular manifold and is defined as 

( 1 3  
in terms of the singular part operator V and the logarithmic derivative of the ‘r-function’ 
$h which represents the movable singular manifold @ = 0. In particular, for the three 
PDB of the ZakharovShabat-Ablowitz-KaupNewellSegur scheme (2s-AKNS; Zakharov 
and Shabat 1971, Ablowitz et al 1974) which have hoo families of movable singularities, 
namely MKdV, SG and nonlinear Schredinger (NLS) equations, the ET (Lax pair and UT) is 
not found by Weiss with the partial exception of the NLS where only the Lax pair is found 
after a skilful computation, however less algorithmic (i.e. the Law pair could not be found 
if not known in advance; see details in appendix C).  

We present here an extension, already outlined elsewhere (Musette 1994), of the 
(one-)singular-manifold method of Weiss, which we naturally call the two-singular-manifold 
method, to PDES having two families of movable singularities with opposite principal parts 
such as the MKdV, SG and NLS. The method consists of two stages. The first stage is the 
derivation of the UT by performing the one-singular-manifold method separately for each 
of the two families; this DT typically expresses the difference between the two solutions U 
and U of the PDE as the algebraic sum of the singular parts 

U = U + D log $1 - Vlog *2 

U = U + D log @ 

(16) 

defined in terms of V and the logarithmic derivatives of the %functions’ $1 and $2 of 
each family. 

The second stage consists of obtaining the Lax pair, represented by an equivalent 
projective Riccati system; since the only information about it is that @I and @* must satisfy 
the same linear system defining the Lax pair, one takes the most general such Riccati system 
with undetermined coefficients, i.e. in the second-order case of one Riccati component 

Yz = Ro + RIY + R2Y2 

r, = so + SIY + S2Y2 

Yxr - Yr, = xo + XIY 4- X*YZ = 0 

(17) 

(18) 

(1% 

The components (Y, = Y,  . . .) of this (generally multi-dimensional) Riccati system are 
defined in terms of the two functions ($1, $2) representing the two singular manifolds: 
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Y1 = Y = @,/@z, . . , , This second stage now consists of generating and solving a small 
set of determining equations, whose unknowns are the coefficients ( R ; ,  Si) of the Riccati 
system, to be found in terms of the PDE solution U which occurs in the DT; these determining 
equations are generated by inserting the UT (16) into the PDE E ( u , x ,  t) = 0 thus resulting 
in an extension of the Weiss truncation procedure to negative and positive powers. 

Finally, the BT is obtained by the elimination of Y between the DT (16) and the Riccati 
form of the Lax pair, a step which reduces to a simple substitution when the operator D 
can be inverted. 

Throughout this paper, we use the invariant formalism (Conte 1989) of Painlev6 analysis, 
which is equivalent to the Weiss-Tabor-Carnevale W C )  one (Weiss et al 1983) and 
presents the advantage of shortening many of the expressions due to its built-in homographic 
invariance (see appendix A). 

Remarks. 

Painlev6 (1902), who expressed the general solution of (P2) 

M Musene and R Conre 

(i) The idea of taking account of two r-functions, instead of just one, dates back to . r . ,  

(PZ): uzx = zU3 + x u  + (Y 01 = constant (23) 

in terms of two entire functions ($1, $2) 

(ii) The advantage of the Riccati form over any other nonlinear pseudopotential to 
represent the Lax pair has often been emphasized (Mmini 1987, Nucci 1989, Musette and 
Conte 1991). 

(iii) There exists no homographic transformation which maps the particular Riccati 
system Y = x of the invariant Painlev6 analysis (equations (92) and (93)) onto the above 
general one ((17) and (18)) for arbitrary values of their coefficients. Indeed, such a 
transformation conserves the number of cross-derivative conditions, which is one for x 
and three for Y. Restricting Y to a homographic transform of K would miss, for example, 
the Riccati pseudopotential of the NLS which has two non-zero cross-derivative conditions 
(142), although this would not miss the SG or MKdV case which have only one non-zero 
cross-derivative condition (68) or (87) (see equation (88)). It is therefore necessary to go 
beyond the variable x .  The fundamental reason behind this is that x contains no more 
information than one singular manifold, as shown by its explicit expression (91). This 
is reflected in the different possible linearizations of these Riccati systems: the system 
for Y cannot, in general, be linearized by the transformations Y = -(l/Rz)qJ@ or 
Y = RO$/$~ which explicitly restrict Rz or RO to never vanish; it can only be linearized by 
Y = $, into an essentially two-component linear system and is thus well suited to the 
two-manifold situation. In contrast, the x system supports both types of linearization but 
the type x = ql/$z should not be understood as involving two different manifolds since 
in fact $2 = $ I . ~ .  

(iv) The 'squared eigenfunction transformation' (Weiss et al 1983) 

$?z = v2 (2s) 

between the singular-manifold function 'p of WTC and the solution $ of the unknown 
underlying Lax pair, which works so nicely for many one-manifold €'DES, is not adapted 
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to the two-manifold PDEs. Indeed, it relies on a property of the Wronskian that @ and 
rG. rG.-*dx are two independent solutions of the linear ordinary differential equation (ODE) 
which defines the first half of the Lax pair. However, such a property explicitly assumes for 
this ODE the Sturm-Liouville form (94), i.e. it restricts the Riccati equation (17) to RI = 0 
and either RO or Rz to a pure non-zero constant. 

(v) A similar extension of the Weiss mncation to negative and positive powers has 
already been considered (Pickering 1993) but its use of x instead of Y only allows one to 
find travelling waves of integrable or non-integrable PDEs. 

(vi) A recent attempt has been made (Esttvez et id 1993) to extend the above idea of 
PainlevC to PDES in order to retrieve two Lax pairs. For the Broer-Kaup system (Broer 1975, 
Kaup 1975, Matveev and Yavor 1979) and the modified Boussinesq equation (Hirota and 
Satsuma 1977). these authors introduced two manifolds but could not retrieve the correct 
Lax pair (Fordy and Gibbons 1981) of the modified Boussinesq equation and could only 
find the restriction of the Broer-Kaup equation (Kaup 1975) to a zero value of the spectral 
parameter. Moreover, their method was not systematic. Similar ideas have also been used 
slightly differently (Garagash 1993). 

In section 2, we recall the (one-)singular-manifold method of Weiss which, when applied 
to the KdV equation, i.e. the only one-family equation of the 2s-AKNS class, yields both the 
DT and the Lax pair. This result is needed for it will be used later. Section 3 details the 
present method, already outlined above. The case of the SG, by far the simplest one, is 
handled in section 4. The case of the modified KdV, which needs the prerequisite results 
for the KdV, is treated in section 5. 

2. The (one-)singular-manifold meihod 

Consider a PDE, algebraic in U and its partial derivatives 

E ( u ,  n, t )  = 0 

which passes the Painlevt test, i.e. which fulfils all the necessary conditions one can build 
for the absence of movable critical singularities in the ‘general solution’. One assumes that 
it does not admit two families of movable singularities with opposite principal parts. Such 
a one-family PDE is the KdV equation 

admitting the single family U - 2ax-’ with the Fuchs indices (‘Painled resonances’) 
-1,4,6 

C - 4 s  a 
u=2ax-  - a -  + Z‘C - S)XX + 0(xZ).  6 

The idea (Weiss et al 1983) is that the singular part, i.e. the restriction of this local 
Laurent series to its non-positive powers, contains all the information for aglobal knowledge 
of the PDE through its DT and its Lax pair. This is quite analogous to the proof of ‘int6gration 
parfaite’ (achieved) in which Painlevt (1902) expressed the general solution of his first 
equation (PI) 

(Pl): U,, = 6u2 + x (29) 
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in terms of an entire function @ through a logarithmic derivative 

M Musette and R Come 

Let - p  and -4 denote the two positive integers (2 and 5 in our KdV example) equal to 
the singularity orders of U and E. We consider (Weiss et al 1983) the truncated series 

where coefficients uj, j E [O, -PI are equal to those of the infinite expansion (28). 
Coefficients ( u j ,  E j )  only depend on the homographic invariants (S, C) and the arbitrary 
coefficients ui introduced at Fuchs indices i lying in the interval [O, - p ] .  The truncation 
(31) only exists if the set of overdetermined equations 

V j  E 1 - p ,  -41 : Ej(S, C, [U[, i Fuchs index E [O, -PI]) = 0 (32) 

has a non-empty solution. 
In OUT KdV example, one finds 

E3 z -2a(C - S), = 0 

12Es 

(33) 

(34) -2u(C - S), + (C + 2S)E3 + 4E3,x, = 0 

equations equivalent to the single equation 

C - S - 61 = 0 h = arbitrary constant (35) 

called the singular-manifod equation ( S M K )  by Weiss. 
The parametric representalion of the SME 

U U 
S = -2- -2A C =  -2- +4A (36) a U 

provides the Riccati system (92) and (93) 

U 
a 

(x - ' )  x -  - -,y-'+ - +A (37) 

satisfying the cross-derivative condition (97) X z -@/a)KdV(U) = 0. This system is 
linearizable either by x = */qX into the second-order linear system ((94) and (95)) 

(39) 

(40) 
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or by x = @I /@2 into the ZS-AKNS matricial Lax pair. The map between two solutions of the 
KdV results from the equations defining the truncation (31) and the parametric representation 
(36) 

C+2S  
UT = -2a(log@),, -a- 6 

= -2a(log@),, + U. (42) 
In this case, the Weiss truncation yields both the Lax pair ((39) and (40)) and the DT (42). 

For a scattering problem of order higher than two, the function @ in equation (42) is 
assumed to satisfy a scalar unknown Lax pair (Weiss 1983, Musette and Conte 1991) with 
the coefficients to be determined. 

The one-family truncation equations (32) have been called Painlevd-Biicklund equations 
(PB) for this ability to generate the DT and the Lax pair and therefore the aUtO-BT (Lamb 
1974) by substitution of the DT (42) x-' = -(w - W)/(Za)  into the couple (37) and (38) 
(notation UT = U = w,, U = W,) 

a(w + W), = - h 2 A +  &(w - W)' 

a ( w + ~ ) ,  =zw,,(w- W ) + ~ W , ~ + Z W , W , - ~ ~ A ( W -  w ) ~ .  (44) 

a(w + w), = (w - W)(W - w ) ~ ~  + z (w ,~  + W,W, + w,'). 

(43) 

The second equation can be made invariant under the exchange of w and W 

(45) 

3. The two-singular-manifold method 

Consider now the PDE (26) which passes the Painlevt test and admits two families of 
movable singularities with opposite principal parts such as the MKdV (8) 

U -*ax-' indices - 1,3,4, (46) 

(47) 

e*'" = U*' - -4Cx-' indices - 1,2. (48) 
The first stage of the method we propose consists of performing the WTC truncation 

(31) successively for each of the two families. This process is entirely algorithmic up to the 
generation of the truncation equations Ej = 0, j E] - p ,  -41 and is summarized in table 1. 
The resolution of the truncation equations, although non-algorithmic (we will call it almost 
algorithmic), is quite easy (see appendix B for SG, appendix C for NLS) and leads to the 
SME. For the MKdV, SG and NLS, which are all invariant by parity, this SM6 is independent 
of the choice made among the two opposite families. 

or the SG equation (3) put in polynomial form (PSG) ((47) and (48)) 
3 ~ ( v v , ,  - vzv,) - v + U  = 0 e'" = v 

Table 1. The results of the Painlev6 analysis, The four polynomial FOFS are (27), (8). (47) and 
(128). The integers (p. q )  at defined in (31). The next column lists the Fuchs indices, except 
-1. Column 'PB' lists the subscripts of the non-identically zero PB equations: in the SO and NU 
case, they depend on the arbitrary coefficients introduced at the index 2 (sG) and 0 (NU). 

Name D 4 Indices PB eq SME 

KdV -2 ~ -5 4.6 2.5 C - S- 6A = 0 
MKdV -1 -4 3,4 2 c - s = o  
SO -2 -6 2 3 ,4 ,5 .6  S + C,,/C - (Cz/C)2/2 + 2.4 = 0 
N U  ( - l . - l )  (-3,-3) 0 .3 ,4  2.2,3 C, +3CC, - S, + 8AC, = 0 
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The second stage consists of exhausting the information contained in the SME in order 
to obtain first the DT, then the Lax pair. This DT is materialized by finding another solution 
of the PDE, distinct from the truncated variable U T ,  and this may require the consideration 
of other intermediate PDEs ('Miura transforms'). Once found, the DT is expressed in terms 
of the components (Yl = Y,  . . .) of an undetermined Riccati pseudopotential. This defines 
a truncation different from that of WTC, extended to negative and positive powers of Yk. Its 
resolution is as easy as that of the WTC truncation and presents quite similar features, like 
identically zero equations in which the subscript is a Fuchs index, or the symmetric of a 
Fuchs index, with respect to -q. Finally, the matrccial Lax pair results from the canonical 
linearization of the projective Riccati system. This is now detailed for two examples. 

4. The sine-Gordon case 

The SG equation (3) is invariant by parity on U and by exchange of 8, and 8, so any result 
must have this invariance. 

Let us denote by (xi, I){, si, Ci), i = 1,2 the functions (x ,  I), S, C) pertaining to each 
of the two families of movable singularities U - -4Clx;' and U-' - -4Czx;'. The PB 
equations have the following general solution (Weiss 1984, Conte 1989) (see appendix B). 
For the first family 

eiu = U = +log I ) ~ ) ~ ~  + V. 

For the second family = w - -4C2x;' 

e-i" = w = -4(logI)~),, + W .  (54) 

If one considers only one of these two equivalent singular manifolds, the cross-derivative 
condition (97) is evaluated to e-iu(dusG(U)), and not simply to %(U) which proves that 
the one-singular-manifold method does not provide the correct Lax pair. More precisely, 
from this Lax pair, the N-soliton solution could not be generated by the Crum procedure 
(Crum 1955). 

The algebraic sum of the two opposite singular parts is best computed on sin U ,  which 
has the same parity as U, from the two equations (51) and (54) 

sin U = Zi((l0g q ~ ) ~ ,  - (log q~) ,~ )  + sin U (55) 

an equation which, from the definition of the SG PDE, is equivalent to 

uxI = Zi((logddZt - (1ogI)drr) + G. (56) 
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Integrating twice, we finally obtain the DT of the SG 

U = zi(1og - log *2) + U (57) 
defined in terms of both families. In terms of Y = @I/&. the 'truncation' is 

U = 2ilogY + U @ = ~ - ~ e ' ~  Y = - ~ SG(U) = o  SG(U) = O  (58) 

and one must identify 

*I 

*2 

4 

S C ( U )  - SG(U) !E 1 EjYj-2 
j = O  

(59) 

to the null polynomial in Y. The set of five PB equations is invariant under the involution 

(60) 1 (y, Rk, Sk, U )  + (Y- , -&k. -SZ-k. -U)  
~ k = 0, 1.2 

E3 !E -2Ri S2 - 2Sz,= = 0 (64) 

(65) 
1 

2v 
E4 E -2RzSz + - = 0 

and the absence of movable logarithms at index 2 is reflected in E2 being a differential 
consequence of (EO, E l )  or (E4 ,  Es)  as well, modulo the conditions (20)-(22). One obtains 
(SoSz), = 0 from El,  E3, then (RoRz), = 0 from the two cross-derivative conditions (20) 
and (22) and RORZSOSZ = -1/16 from EO, E4. This introduces an arbitrary constant 
p = SO& and the third cross-derivative condition XI = 0 (21) expresses the fact that 
-Si/(pV) is a solution of (47), i.e. equal to either V or l /V (the value f l  would make 
XI identically zero and, hence, it would not provide a pseudopotential). For -$/(/AV) = V 
the unique solution is the Riccati pseudopotential 

(66) 

(67) 

VX Y, =A(l-Y2)+-Y =A(l-YYZ)+iU,Y p=-16A2 

4AY,=V--=(l  -YZ)cosU+i(l+'YZ)sinU 

V 

YZ 

V 

while the choice -Si/(pV) = 1/V provides the pseudopotential obtained by exchanging 
a, and a,. In contrast to equation (92) with S given by equation (50), equation (66) is now 
linear in A and U and able to (Salle 1982, Matveev and Salle 1991) generate the N-soliton 
solution, as required for a 'good' Lax pair. 

As to the BT (5). it is readily obtained by substituting Y = exp(-(i/Z)(u - U)) into the 
two equations (66) and (67). 

Remark. The physical equation so (3) does not admit a one-family truncation but only a 
two-family one while the non-physical but polynomial equation PSG (47) admits both. 
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5. The modified KdV case 

Equation (8) has two families U - fax-' which we simply denote U - wx-' since a! is 
only defined by its square. The truncated expansion of any one of the two families reduces 
to 

UT = O1x-I. (69) 

M Musette and R Conte 

The SME S -,C = 0 is parametrized as 

S = -2(u/a) C = -2(u/a) KdV(u) = 0 (70) 

and equations (94) and (95) fait to define a Lax pair for the MKdV because the cross- 
derivative condition (97) evaluates to (a, + ( ~ / ( Y ) M K ~ V ( U ~ ) ) M K ~ V ( U T )  and not simply to 
MKdV(UT) as it should. The precise transformation between U and U (Miura transformation) 
is obtained by eliminating x between (69) and (92) 

U* 2 U 

f f x  ff a 
(2) + (-) = -. 

In fact there are two such Miura eansformations, one for each sign of 01, i.e. one for each 
family. Equation (69) involves only one solution of the MKdV, not two as in the SG case 
(51). and thus it also fails to provide a DT. 

Let us first obtain the DT for the MKdV from that of the KdV and show that it involves 
two singular manifolds. The DT for the KdV has been obtained in section 2 ,  equation (42). 
The two Miura transformations (71) and the parametrization (70) imply 

(73) 
s2 KT ur 

- - 2 = (--) + (-) f f x  = -2(log@z)xx -I- 

and taking the algebraic sum of the singular parts eliminates the nonlinear terms 

uT.x = O1((b@l)zx - (lOg!hZ)xx) + u x  (74) 

a relation which, after one integration, yields the DT for the MKdV 

O1((l~g@l)x - (1% ' k d x )  -I- U = UT. (75) 

With this UT, the Lax pair is obtained as explained in section 3. Setting Y = @,/@z 
and taking account of (17) and (18). every derivative of Y evaluates to a polynomial in Y .  
Consequently, the DT (75) identilies to 

(76) UT = U(RoY-' + RI + RzY) 4- U 

and one must identify 
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to the null polynomial in Y .  Equations EO = 0 and E8 = 0 are, by construction, identically 
zero since the exact principal part OYJY was inserted. The combinations Ej f E8-j of the 
PB equations have panty &(-I))+’ under the involution 

(Y ,  Rk, Sk, U )  + (Y-’ ,  -R24, -S24, -U)  k = 0,1 ,2  (78) 
and the Fuchs indices 3 and 4 make not only the equations E3 = 0, E4 = 0 identically zero, 
as in the WTC truncation, but also Ea-j = 0, j = 3,4, i.e. also j = 5. Finally, among the 
nine PB equations Ej = 0, only four ( j  = 1,2,6,7) are not identically zero: 

U RO x 

RO a (79) E1 E 6- + 6R1+ 12- = 0 

U U2 

a ffz +24R1-+6-=0 

U U 2  

cf ff2 
-24R1--6- = O  

and they are immediately solved as 

One thus obtains (RoR& = 0 from these equations and (RoRz), = 0 from the two cross- 
derivative conditions XO = 0 and X2 = 0. equations (20) and (22). This introduces an 
arbitrary constant which we denote -A2 = RoR2 and the third cross-derivative condition 
X I  = 0 (21) expresses the condition that U + ER, must satisfy the MKdV equation, i.e. 
be equal to EU,  E = f l  (the choice U + olR1 = 0 does not provide a pseudopotential). 
Changing Y to AY/Ro, we finally obtain a unique solution as a paramettic representation 
of the six unknowns Rj, Si in which Ri is linear in U and the spectral parameter h 

(85) 
EU 
ff 

Y, = A(l  - Y Z )  - 2-Y 

EUX ( 1 - Y 2 ) - 2 A - ( l + Y 2 ) f E  
ff 

= 
ff 

ffxl E -%MKdV(U) Xo E 0 xz E 0. (87) 

two equations (85) and (86) with the choice E = 1. 
As to the ET (10) and ( l l ) ,  it i s  obtained by substituting Y = exp((w - W)/ (Y)  into the 
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Remarks. 
(i) The Lax pair found by Weiss (1983) is, in fact, that of the KdV, not that of the 

MKdV, even after introduction of the missing spectral parameter A by exploiting the Galilean 
invariance of the KdV. Indeed, even after the replacement of the solution of the KdV in terms 
of that of the MKdV in (39) and (40) using the Miura transformation (71), the cross-derivative 
condition (97) evaluates to (a, + (Z/U)MKdV(u))MKdV(U). 

M Musette and R Conre 

(ii) Under the ad hoc homographic transformation (Musette 1991) 

the Riccati pseudopotential of KdV (37) and (38) (with (U, X) denoted (V, /A) to avoid 
conflicting notation) is transformed into that of MKdV (85) and (86), after the replacement 
(71) V / a  = (U/or)' .f U,,/a. The quadratic term U2 of (37) has now disappeared from 
(85) and the cross-derivative condition (Yz, - Ytx)/Y is MKdV(U). 

One important feature to notice is the different linearization of these two Riccati 
pseudopotentials. That of KdV (37) and (38) can be linearized either by x = */@x or 
by x = @I/& into, respectively, the scalar form of the Lax pair or the ZS-AKNS matricial 
form, equivalent under $1 = *, $2 = qZ. In contrast, that of the ~ K d v  cannot be linearized 
by Y = a transformation which would explicitly restrict A to be non-zero. 

(iii) The elimination of the linear term UT between (72) and (73) leads to 

U; = -U*aog(@.llLz)),, + u2 
consistent with the bilinear representation of Hirota (1972). 

(89) 

6. Conclusion 

Forthcoming papers will handle seemingly more complicated equations, such as the. NLS, 
the Broer-Kaup system or the 'second modified' KdV equation (Fokas 1980, Nakamura and 
Hmta 1980, Calogero and Degasperis 1981). The present method could also be applied 
to higher-dimensional equations, such as the (2 + 1)-dimensional generalization of the SG 
equation (Konopelchenko and Rogers 1991). 

Appendix A. Invariant Painlev6 analysis 

This consists of a built-in resummation of the Laurent series in order to generate the shortest 
possible coefficients without losing &y information. Given a movable singular manifold 
(rp denotes a function, (00 an arbitrary constant) 

rp-m=O (90) 

the expansion variable x .  which must vanish as rp - 90. is chosen to be (Conte 1989) 
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The movable singular manifold can thus equivalently be represented as (90) or x = 0 or 
@ = 0. The variable x satisfies the Riccati equations 

xx = 1 + ;sx= 
xr=-c+c,x-; (CS+C,, )x  2 

qx, + i s @  = 0 

*c + c*x - ;cx* = 0 

and the variable @ the linea equations 

the coefficients of which only depend on two functions of the derivatives of (0 

linked by the cross-derivative condition 

x = SI + c,,, + 2CJ + cs, = 0 

The coefficients (uj. E j )  of the Laurent series in x only depend on (S, C) and their 
derivatives (plus the arbitrary coefficients ut introduced at the Fuchs indices i) and are 
therefore invariant under the group of homographic transformations 'p -+ (apfb)/(cp+d), 
((a, b, c ,  d )  = arbitrary complex constants). 

The function @ has movable zeros as the only movable singularities and, consequently, 
the expansion variable x , which depends on one arbitrary function, has movable poles and 
movable zeros. 

Appendix B. One-family truncation of the zs equation 

The SG equation belongs to a group of equations isolated by Zhiber and Shabat (1979) 

uxt + ae' + ale-" + aoe-zu = 0 (98) 

which passes the Painlev6 test only in the three cases (a1 =~ a0 = 0) O,iouville), 
(a1 # 0, no = 0) (SG or sinh-Gordon, with identical singularities), (a1 = 0, a0 # 0) 
(Tzitz6ica or Dodd-Bullough-Mikhailov (DBM) (Tzitz6ica 1910a,b, Dodd and Bullough 
1976, Mikhailov 1981)). We here discard the case of the linearizable Liouville equation. 

The only dependent variables equal to a power of e" which, at the same time, 
make the zs equation polynomial and the leading power p a negative integer are e' 
and e-'. In the SG case they are equivalent and, in the DBM case, the PDE for e-" 
( p  = -1, q = -4, indices (-1,Z). E? = 0, E4 = 0) has no solution (Weiss 1986). Let 
us therefore perform the one-family truncation of e' in the case (a,, ao) # (0.0). The 
polynomial PDE satisfied by the variable e' = v 

(a, a1 , ao) = constants a # 0 

E ( v ) - v v , , - v , v , + ~ v ~ + u , v + ~ ~ = o  (99) 
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has the one-family truncation ( p  = -2, q = -6, indices - 1,Z) 

M Musette and R Conte 

am = 2Cx-' - 2CZx-' +arbitrary coefficient (100) 

and we define the arbitrary coefficient uz arising at the Fuchs index 2 with a convenient 
translation aimed at making UT - uz invariant under the permutation P(&, 8,) + (af, a,) 
which leaves the zs equation invariant 

(101) 

The four PB equations Ej = 0, j = 3,4,5,6 depend on (S, C, u2) and the first three are 
linear in (Q~ ,  qr, uzJ with a Jacobian equal to J = (IogC),,. This makes the resolution 
extremely easy. 

The case J = 0 implies S and C constant (after some algebra) and leads to the soIutions 
(Conte and Musette 1992) 

[YUT = zcx-2 - 2c,x-' + a u z  + sc + c,, - $(logC),. 

V(u,, ai):  (Yu = - Ct - X I )  - 1 
4 

(DBM): 011) - C? -XI) - - 
k4 ( Y U ~  k6 L Y U ~  CY'%) 

+ c t  -x2 .  - + -, -- + - - - 
12 c2 216 6c2 4c3 

where p is the Weierstrass elliptic function. These solutions depend on two and four arbitrary 
constan!& respectively. Therefore, the DBM equation (103) does admit a truncation with a 
non-empty solution, provided one considers e" and not e-u. 

Remrk. The solution (103) is a degeneracy of the exact solution to the DBM equation 

- ct - X l , g z ,  A + - "@) - 2cp (X + ct -x2,g2, A - - 
8c3 8c3 

depending on five arbitrary constants ( X I ,  x2, c ,  gz, A )  and representing the superposition of 
two travelling waves of opposite velocities. This solution is, to our knowledge, new. 

In the generic case J # 0, the four PB equations are algebraically equivalent to 

where Kn and A,, denote short expressions of (S, C) independent of (or, a l .  m). Due to the 
convenient translation, the A, are invariant under P (AI = -A2 = 5/2 is odd, A3 is even). 
The Schwan cross-derivative conditions provide two other relations 

U((Uz.x)r - U Z J I )  (YUI + 3(OrUz - AZ)(UUZ - A4) = 0 

~((Uz.r )x - Uz.zr) E (YUI + 3(OrUz - A1)(aVz - AS) = 0 

(109) 

(110) 
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where A4 and A5 are also independent of (or, a ' ,  QO) and exchanged under 7'. The useful 
expressions are 

or2ao - (A5 - A I ) ( A ~  - &)(A4 + A s  - 2A3) = 0 I1 19) 

equations currently under examination in order to possibly obtain the BT of the DBM equation 
(Tzitziica 1910a,b, Gaffet 1988, Andreev 1989, Safin and Sharipov 1993), i.e. its Lax pair 
and its DT. 

In the SG case, the one-manifold truncation equations are equivalent to 

0 ~ ~ 2  = A3 

A3,x - KlA3 - K2 = 0 

A3.r - K3A3 - K4 = 0 

U U I  + 3(A3 - A2)(A3 - A4) = 0 

+ 3(A3 - A,)(A3 - A s )  = 0 

and their general solution (Weiss 1984, Conte 1989) depends on one arbihary constant h 
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Appendix C. One-family truncation of the NU’ equation 

Instead of the NLS equation 

M Musette and R Conte 

E iul + uIx + alu[*u = 0 a E R a # 0 U E C (127) 

let us process the system (Zakharov and Shabat 1971, Ablowitz et al 1974) 

iu, +U,, + au2u = o 
- i u r  + U,, +auu2 = o 

in which the reduction U = 17 is the N U .  
The onefamily truncation 

U* = uox-I + U1 
3 = vox-l +U1 

has been performed by Weiss (1985) and his results expressed in the invariant formalism 
(appendix A) are 

UT = A,@ (x- l  - iw, + Lit) 2 (131) 

F z ~ S - ~ C 2 - w w f + 2 C w r - 3 w ~ = 0  AoBo=-Zfa (132) 

3 = &,ebiw (x-’ + iw, - fic) 

Gz = i(C - w , ) ~  = 0 (133) 

(134) 

where w is the arbitrary function associated with the index 0 and F,. Gj, j = 2 , 3  the 
truncation coefficients (31) of the half sum and the half difference of equations (128). Their 
resolution is achieved by the elimination of S which provides the relation 

I 1 F3 wXf + ~w,w,, - fCwxr - ?S. -, jCr - wZC, = 0 

- Fz ,~  + iCGz - 2F3 = (C - w& = 0 (135) 

and introduces an arbitrary constant 2h = wx - C. 
The elimination of w yields the SME for (S, C )  

wX = C + 2 X  WI = S -  ;C2-8XC- 12X2 (136) 

Cr + 3CCz - S, + 8hCx = 0 (137) 

while the elimination of (S, C )  yields a PDE for w 

(138) 

(139) 

which is nothing other than the Broer-Kaup equation (Broer 1975, Kaup 1975). Thus, as 
for the MKdV, a second solution to (128) iS Still missing at this point in order to define a DT, 

3 2  s = ZWx + n w ,  + WI +2)? c = w, -U 

0 2 wxxxx + 6w,~.r.r + 4w.xwxz + 2wtw.r.x + wrr 
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and the application of the present method to the Broer-Kaup equation (Conte er a1 1994) 
may clarify this point. 

As to the Lax pair, it was found by Weiss (1985) without the help of a DT, in a 
way which looks rather complicated at first glance but which results in fact from the 
elimination of x between the three equations (131) and (92): the antisymmetric combination 
U T / ( A O ~ O )  - (w/Bo)%, where 90 = eiw, directly yields the x part 

u u  
(00.~ + 2iApo + - - -vi  = 0 U = UT U = *  (140) Ao Bo 

and the symmetric combination u ~ / ( A o q o )  + (w/Bo)qo defines a value for x which, after 
replacement in (92), yields the t part 

with the cross-derivative condition 

Oog90),z - (1% P0)xt = - (142) 
-iu, + U,, + am2 + 'pa. 

Bo 
is simply the exponential of a solution of 

the Broer-Kaup equation, whose link with NLS is well known (Hirota and Satsuma 1977, 
Matveev and Yavor 1979). 

The only criticism one can make of this nice derivation of the Lax pair by Weiss is the 
elimination of x, which is obviously ad hoc for the NU. 

Truncation (131) does not apparently involve another solution to (128), distinct from 
( U T ,  w), and this is reflected by the dependence of equations (140) and (141) on ( U T ,  U T )  

and not on this other missing solution. Therefore other developments are necessary in order 
to find the DT by singularity analysis only. 

Remark. 
involution 

iu, + uzz + au2u 

A090 
Therefore, the Riccati pseudopotential 

The Riccati pseudopotential equations (140) and (141) are invariant under the 

accordingly, if one defines 

U 
AoY 

a, logy - - + 2i*) Y 
with (U, V )  another solution of (128) and Y a solution of the Riccati equations (17) and 
(18), these expressions (144) generate an extended truncation quite similar to that of the 
SG or the MKdV. This truncation is found to admit as a unique solution the above Riccati 
pseudopotential where (qo ,  U. U) is replaced by (Y, U, V). Therefore, equations (144) are 
as able to generate a Lax pair as equations (58) and (76) which, for the SG and the MKdV, 
define the DT. Unfortunately, equations (144) fail to define a DT because equations (144) 
and (140) altogether imply (U, U) = (U, V), i.e. these solutions are not two different ones. 
However, from the point of view of s ingu l~ ty  structure, truncation (144) is quite nice since 
it is expressed in terms of only two r-functions, instead of the usual four (Chen 1974, Lamb 
1974, Konno and Wadati 1975, Levi etal 1984, Neugebauer and Meinel 1984). 

To conclude this NLS case, finding the DT and the Lax pair in a purely algorithmic way 
based only on the singularity StruCtUE, as for the SG and the MKdV, is still an open question. 
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Remark. The transformation 
ZS-AKNS matriciai Lax pair should be related to the DT for the Broer-Kaup equation. 

M Musene and R Conte 

= +1/+2 linearizing the Riccati pseudopotential into the 
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